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RESUMO: Os escorregamentos de terra representam uma das principais ameaças à integridade de 

infraestruturas lineares no mundo e em especial nas regiões tropicais quando se trata de Brasil. Este estudo 

aplicou o algoritmo Random Forest para modelar a suscetibilidade a escorregamentos em um trecho de 41 km 

da Estrada de Ferro Carajás (EFC), no estado do Maranhão, Brasil. A metodologia integrou doze variáveis 

condicionantes derivadas de Modelos Digitais de Elevação (MDE) e dados ambientais, com destaque para 

declividade, NDVI, precipitação e distância a falhas geológicas. Os dados foram organizados em ambiente 

SIG, e o modelo foi treinado com 7.500 amostras positivas e 10.000 negativas, obtidas a partir de inventário 

de escorregamentos e áreas estáveis. A validação cruzada estratificada e a análise da curva ROC (AUC = 0,94) 

indicaram alta capacidade preditiva. O mapa final de suscetibilidade destacou setores com maior risco, 

especialmente próximos a taludes ferroviários, onde se concentram as classes "Muito Alta" e "Extrema". A 

abordagem mostrou-se eficiente para identificar áreas críticas e variáveis mais influentes, sendo uma 

ferramenta útil para o planejamento e mitigação de riscos geotécnicos. A abordagem adotada permite 

identificar a importância relativa de cada variável na previsão da suscetibilidade, além de gerar mapas 

probabilísticos de áreas propensas a movimentos de massa.  

 

PALAVRAS-CHAVE: Suscetibilidade a escorregamentos, Infraestrutura ferroviária, Modelos Digitais de 

Elevação (MDE), Random Forest, SIG (Sistema de Informação Geográfica), Variáveis morfométricas e 

ambientais.  

 

ABSTRACT: Landslides are among the main threats to the integrity of linear infrastructure in tropical regions. 

This study applied the Random Forest algorithm to model landslide susceptibility along a 41 km segment of 

the Carajás Railway (EFC), in Maranhão, Brazil. The methodology integrated twelve conditioning variables 

derived from Digital Elevation Models (DEM) and environmental data, highlighting Declividade, NDVI, 

rainfall, and distance to faults. Data were processed in a GIS environment, and the model was trained using 

7,500 positive and 10,000 negative samples, based on a landslide inventory and stable areas. Stratified cross-

validation and ROC curve analysis (AUC = 0.94) indicated high predictive performance. The final 

susceptibility map revealed high-risk areas, particularly near railway embankments, where "Very High" and 

"Extreme" classes are concentrated. The approach proved effective in identifying both critical zones and the 

most influential variables, providing a valuable tool for geotechnical risk planning and mitigation. This 

approach enables the identification of the relative importance of each predictor in estimating susceptibility, 

while also generating probabilistic maps of areas prone to mass movement. 
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1 INTRODUÇÃO 

 

 A análise de suscetibilidade a escorregamentos tem sido amplamente desenvolvida desde os anos 1970, 

com crescente destaque na literatura científica nas últimas décadas, refletindo a preocupação global com os 

impactos geodinâmicos (Reichenbach et al., 2018). A suscetibilidade a escorregamentos corresponde à 

estimativa espacial da probabilidade de ocorrência desses eventos, com base em fatores condicionantes do 

terreno, sem considerar sua frequência temporal (Fell et al., 2008; Cascini, 2008).  

 O mapeamento da suscetibilidade integra registros históricos e variáveis ambientais para identificar 

áreas potencialmente instáveis, incluindo aquelas afetadas por escorregamentos originados externamente à área 

de estudo (Bonini et al., 2025). Tal abordagem constitui uma ferramenta fundamental para o planejamento 

territorial e a gestão de riscos geotécnicos (Pandey et al., 2019; Gorsevski et al., 2006). 

 Este estudo analisa a distribuição e os condicionantes dos escorregamentos ao longo de um trecho da 

Estrada de Ferro Carajás (EFC) (Figura 1), inserida em uma superfície planáltica de baixa altitude do Planalto 

Dissecado Gurupi-Grajaú (IBGE, 2011; Rodrigues de Sousa et al., 2025). Para modelagem da suscetibilidade, 

será empregado o algoritmo Random Forest, reconhecido pela alta acurácia em contextos geográficos diversos. 

 
Figura 1. Mapa geológico simplificado do trecho da Estrada de Ferro Carajás (EFC)entre os km 375 a 411, 

localizado entre os municípios de Buriticupu, Bom Jardim e Bom Jesus das Selvas, no estado do Maranhão. 

2 MATERIAIS E MÉTODOS 

 

 O processo metodológico para a geração do mapa de suscetibilidade a escorregamentos deste estudo 

(Figura 2), compreende as seguintes etapas: (a) importação e pré-processamento dos dados geoespaciais; (b) 

extração dos atributos preditores e divisão dos dados em conjuntos de treino (70%) e teste (30%); (c) aplicação 

do modelo Random Forest para predição contínua e análise da importância das variáveis; (d) validação do 

modelo com métricas e curva ROC; e (e) elaboração do mapa final de suscetibilidade. Os dados foram 

processados no software R version 4.5.0 (R Core Team, 2025)  e rasterizados e reamostrados com a mesma 

resolução no ambiente ArcGIS Pro 3.2 (ESRI , 2023). 



 

 
  

 

 

 

 

 
Figura 2. Metodologia adotada neste estudo. 

2.1 Aquisição de dados 

 

 Foram utilizados dados vetoriais oriundos do inventário de escorregamentos, totalizando 7.500 amostras 

positivas associadas a 75 eventos mapeados, além de 10 mil amostras negativas correspondentes a áreas 

estáveis. Os fatores condicionantes foram extraídos e processados a partir de camadas raster geradas com base 

no Modelo Digital de Elevação ALOS PALSAR (resolução de 12,5 m; JAXA, 2021), bem como de dados 

ambientais auxiliares. Entre estes, destaca-se a precipitação média anual, obtida a partir do modelo CHIRPS 

por meio da plataforma Climate Engine (Huntington et al., 2017), acessada em 5 de novembro de 2024 via 

https://climateengine.org. As amostras foram coletadas em um trecho da Estrada de Ferro Carajás (EFC), 

inserido em um setor geotécnico com histórico relevante de instabilidades superficiais. 

 A base de dados pontual foi balanceada por subamostragem da classe majoritária (ausência de 

escorregamentos), com posterior divisão espacial estratificada em conjuntos de treino (70%) e teste 

(30%). As amostras foram associadas a uma malha regular de 1.000 m para garantir independência 

espacial entre os grupos. 
 Foram utilizados doze preditores ambientais derivados de Modelos Digitais de Elevação e dados 

temáticos, representando variáveis morfométricas, hidrológicas e ecológicas: Curvatura Tangencial  

(Florinsky, 2011), Curvatura do Perfil (Profile Curvature), declividade, Índice de Umidade Topográfica 

(Topographic Wetness Index – TWI) (Sørensen et al., 2006), Altura Acima da Drenagem Mais Próxima 

(Height Above Nearest Drainage – HAND) (Santos et al., 2020), Potência Erosivo do Canal (Stream Power 

Index – SPI) (Florinsky, 2011), distância até rodovias, distância até rios, distância até falhas geológicas, 

Orientação do terreno (Aspect), precipitação média anual (Huntington et al., 2017) e o Índice de Vegetação 

por Diferença Normalizada (Normalized Difference Vegetation Index – NDVI). Esses preditores foram 

selecionados com o objetivo de caracterizar diferentes aspectos do relevo e do ambiente físico, refletindo 

processos relacionados à morfologia, dinâmica de vertentes e canais fluviais, bem como à cobertura vegetal e 

ao regime hídrico da área de estudo. A combinação dessas variáveis permite uma avaliação abrangente dos 

fatores condicionantes de instabilidades superficiais ao longo da ferrovia. Para evitar redundâncias e garantir 

a independência relativa entre os preditores, foi realizada uma análise de correlação entre as variáveis 

ambientais. A matriz resultante orientou a exclusão de fatores altamente correlacionados, contribuindo para a 

robustez do modelo e a mitigação de efeitos de multicolinearidade. 

 

2.2 Modelo Random Forest  

 

 O algoritmo RF é um método de aprendizado de conjunto, que combina vários modelos de árvore de 

decisão (Breiman 2001). Esse modelo seleciona aleatoriamente porcentagens dos dados de entrada e dados de 

entrada e os separa em subconjuntos. O algoritmo RF pode ser usado para problemas de classificação e 

regressão.Neste estudo, adotamos a opção de regressão, devido à resposta numérica numéricas geradas (Kim 

et al. 2018). A modelagem foi conduzida com validação cruzada estratificada (k = 5) e ajuste do hiperparâmetro 

mtry. O modelo foi treinado com 1.000 árvores e possibilitou a quantificação da importância relativa dos 

preditores. A saída contínua da probabilidade de ocorrência de escorregamentos foi espacializada, resultando 

no mapa de suscetibilidade final. 



 

 
  

 

 

 

 

2.3 Avaliação da precisão do modelo 

 

 A acurácia do modelo foi validada com dados independentes. As métricas obtidas incluíram acurácia 

global, precisão, sensibilidade, especificidade e F1-score. A área sob a curva ROC (AUC) também foi utilizada 

como medida de desempenho discriminativo. O modelo apresentou elevada capacidade preditiva, conforme 

demonstrado pelas métricas e curva ROC. 

3 ANALISES E RESULTADOS 

 

3.1  Análise dos fatores condicionates 

 

A análise de multicolinearidade foi conduzida por meio do cálculo do Fator de Inflação da Variância 

(VIF), com base nas variáveis preditoras utilizadas no modelo. Inicialmente, foram avaliados 13 fatores 

condicionantes, dos quais dois (NDWI e NDVI) apresentaram VIFs elevados (> 10), indicando colinearidade 

significativa. Após a remoção do NDWI, os demais fatores apresentaram VIF < 5, valor considerado aceitável 

para exclusão de dependência linear significativa entre os preditores (Tabela 1). As variáveis com os maiores 

VIFs após a filtragem foram Curvatura Tangencial e Declividade, ambas ainda dentro dos limites toleráveis, 

indicando ausência de multicolinearidade crítica no conjunto final de variáveis. 

 

Tabela 1. Diagnóstico de multicolinearidade entre variáveis independentes. 

Tipo de dado Fatores condicionantes 
Teste de Colinearidade 

VIF VIF (após remoção) 

Características geomorfológicas 

Declividade 1,87 1,87 

Aspecto 1,12 1,11 

Curvatura Tangencial 2,06 2,06 

Curvatura 1,94 1,94 

Características hidrológicas 

TWI 1,85 1,83 

HAND 1,85 1,78 

SPI 1,77 1,77 

Distancia de rios 1,14 1,14 

Precipitação 1,07 1,05 

Características geológicas Distancia de falhas 1,11 1,08 

Uso e cobertura do solo 

NDWI 13,50 removido 

NDVI 12,93 1,12 

Distancia de rodovias 1,40 1,38 

 

 A matriz de correlação evidencia relações estatísticas relevantes entre os fatores topográficos, 

hidrológicos, de uso da terra e de infraestrutura, com impacto direto na modelagem de suscetibilidade (Figura 

3). A declividade apresenta correlação moderada e negativa com o TWI (r = -0,52), indicando menor acúmulo 

de umidade em encostas íngremes. Com o SPI, a correlação é moderada e positiva (r = 0,50), refletindo maior 

energia do fluxo e potencial erosivo em áreas inclinadas. A variável HAND mostra correlações fracas, porém 

positivas, com declividade (r = 0,24) e SPI (r = 0,21), e moderada e negativa com TWI (r = -0,45), sugerindo 

menor saturação hídrica em áreas mais elevadas. Esses padrões destacam a influência da posição topográfica 

na dinâmica do escoamento e saturação.  

 

3.2 Importância das variavéis 

 

 A Figura 4 apresenta a importância relativa das variáveis preditoras no modelo Random Forest, com 

base na métrica de redução média da acurácia (Mean Decrease Accuracy). Essa abordagem avalia o impacto 

de cada variável na performance do modelo ao comparar a acurácia obtida com os dados originais e com os 

valores da variável embaralhados aleatoriamente. A diferença média entre esses cenários reflete a relevância 

da variável na capacidade preditiva do modelo — valores mais altos indicam maior influência na previsão. Os 

resultados indicam que NDVI, precipitação e distância às falhas são os preditores mais relevantes, 

evidenciando a influência significativa de fatores ambientais e estruturais na modelagem de suscetibilidade. 



 

 
  

 

 

 

 

Variáveis topográficas e hidrológicas, como distância aos rios, HAND e TWI, também demonstram alta 

contribuição. Por outro lado, SPI, curvatura e distância às rodovias apresentaram menor impacto sobre a 

acurácia, sugerindo influência preditiva secundária no contexto analisado. 

 
Figura 3. Correlação entre os fatores preditores utilizados na análise de escorregamentos. 

 

 
Figura 4. Importância relativa das variáveis preditoras segundo o modelo Random Forest. A métrica utilizada 

é a redução média do Gini. 

 

3.3 Mapas de suscetibilidade a escorregamentos de terra  

 

 Os resultados do modelo de suscetibilidade a escorregamentos são apresentados na Figura 5, 

que exibe a distribuição espacial das classes ao longo do trecho ferroviário analisado. As classes 

variam de "Muito Baixa" a "Extrema", permitindo identificar trechos com maior potencial de insta-

bilidade. Observa-se uma concentração significativa das classes mais elevadas nas proximidades dos 

taludes ferroviários, especialmente nos trechos destacados, como os entornos dos km 408, 398, 379 

e 375, onde há predomínio das classes "Muito Alta" e "Extrema". 

 Com base nos produtos gerados, a Figura 6 apresenta a distribuição espacial da suscetibilidade 

a escorregamentos ao longo de um trecho da ferrovia, evidenciando setores com elevada concentração 

de áreas classificadas como de alto risco. A classificação da suscetibilidade foi dividida em cinco 

classes: "Muito Baixa", "Baixa", "Moderada", "Muito Alta" e "Extrema".  Observa-se 



 

 
  

 

 

 

 

predominância das classes "Muito Baixa" (36,5%) e "Extrema" (38,7%) em termos de área total 

mapeada (Figura 6a). A análise da distribuição dos escorregamentos observados (Figura 6b) revela 

que 69,9% dos eventos ocorreram na classe "Extrema", seguida por 18,2% na classe "Muito Alta", 

demonstrando forte correlação entre os registros empíricos e as zonas de maior suscetibilidade.  

 A Figura 6c sintetiza graficamente a relação entre a área ocupada por cada classe e a frequência 

relativa de escorregamentos, destacando a desproporção entre extensão territorial e concentração de 

eventos. A classe "Extrema", embora represente menos de 40% da área, concentra mais de dois terços 

dos escorregamentos, indicando sua elevada criticidade. Já a classe “Muito Alta” cobre 10,6% da 

área, mas responde por 18,2% dos registros. Dessa forma, evidencia-se que as classes “Muito Alta” 

e “Extrema” concentram mais de 70% dos escorregamentos, embora representem cerca de 40% da 

área total mapeada. 

 
Figura 5. Mapa de suscetibilidade a escorregamentos ao longo da ferrovia. As classes variam de “Muito 

Baixa” a “Extrema”, 

 

 
Figura 6. Distribuição das classes de suscetibilidade a escorregamentos. (a) Proporção da área total atribuída 

a cada classe de suscetibilidade; (b) Proporção das ocorrências de escorregamentos registradas em cada 

classe; (c) Diagrama de Sankey ilustrando a relação entre a área total, os deslizamentos observados e as 

classes de suscetibilidade, evidenciando a concentração dos eventos nas classes de maior risco. 



 

 
  

 

 

 

 

 

3.4 Avaliação do desempenho do modelo 

 

 A curva ROC (Figura 7) confirma o bom desempenho do modelo preditivo, com AUC = 0,94, 

indicando alta sensibilidade e especificidade. No entanto, essa métrica, embora útil, não garante por 

si só a eficácia da avaliação espacial da suscetibilidade (Adnan et al., 2020; Rossi et al., 2010). Entre 

as limitações, destaca-se a heterogeneidade dos dados de entrada, com fatores derivados de fontes 

com diferentes resoluções e escalas. Por exemplo, a precipitação média anual foi obtida a partir do 

modelo CHIRPS, com resolução espacial de 5 km, contrastando com os fatores morfometricos deri-

vados de dados topográficos de maior detalhamento. Isso pode afetar a coerência espacial dos resul-

tados. Adicionalmente, a seleção dos fatores condicionantes é suscetível à subjetividade, apesar do 

uso do VIF para minimizar multicolinearidade. A limitação do inventário de escorregamentos tam-

bém pode impactar a robustez do modelo. 

 
Figura 7. Curva ROC do modelo Random Forest, com AUC = 0,94. A curva representa a capacidade 

discriminante do modelo, com melhor desempenho quanto mais próxima do canto superior esquerdo. 

4 CONCLUSÃO 

 

 Este estudo demonstrou a eficácia do modelo Random Forest na predição da suscetibilidade a 

escorregamentos ao longo de um trecho da Estrada de Ferro Carajás (EFC), localizado no estado do Maranhão. 

A aplicação do algoritmo, combinada com a análise de 12 variáveis ambientais e morfométricas, permitiu 

identificar áreas com maior propensão à instabilidade superficial. O desempenho estatístico do modelo foi 

considerado elevado, com AUC = 0,94, indicando alta capacidade discriminativa entre áreas com e sem 

ocorrência de escorregamentos. A elevada correlação entre os escorregamentos observados e as classes de 

maior suscetibilidade reforça a confiabilidade do mapeamento produzido. 

 A metodologia adotada contemplou rigorosas etapas de tratamento e validação dos dados, incluindo a 

análise de multicolinearidade, balanceamento das amostras e validação cruzada estratificada. Fatores como 

declividade, NDVI, precipitação média anual e distância a falhas estruturais apresentaram maior importância 

preditiva. Ainda que o modelo tenha alcançado bons resultados, algumas limitações foram observadas, como 

a heterogeneidade nas escalas dos dados de entrada e a limitação do inventário de escorregamentos utilizado 

no treinamento. Esses aspectos podem afetar a precisão espacial e a representatividade dos resultados. 

 Apesar dessas limitações, a abordagem adotada demonstrou grande potencial como ferramenta de apoio 

à gestão de riscos geotécnicos em corredores de infraestrutura lineares. O mapeamento de suscetibilidade 

gerado fornece subsídios valiosos para o planejamento de intervenções preventivas, a priorização de 

monitoramentos e a elaboração de estratégias de mitigação de riscos. Recomenda-se, para estudos futuros, a 

ampliação da base de dados históricos e o uso de modelos complementares que incorporem variabilidade 

temporal, visando ao aprimoramento contínuo da análise de áreas suscetíveis a movimentos de massa. 
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