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RESUMO: O presente estudo teve como objetivo o desenvolvimento e a aplicação de um sistema baseado 

em redes neurais convolucionais (CNN) voltado para a identificação de superfícies de terra por meio da 

análise de imagens de satélite. A metodologia proposta foi aplicada na região litorânea do Paraná, integrando 

imagens satélites de múltiplas fontes com modelos de aprendizagem profunda para monitoramento e análise 

preditiva. Dois modelos foram treinados: um classificador binário (deslizamento/não deslizamento) e outro 

segmentador, capaz de delimitar espacialmente as áreas afetadas. A base de dados incluiu imagens satélites 

de múltiplas fontes e registros georreferenciados de eventos anteriores. O sistema foi desenvolvido em 

Python, com suporte de bibliotecas especializadas, e integrado ao Google Earth Engine para aquisição e 

processamento automatizado de imagens. Os modelos apresentaram acurácia satisfatória no treinamento e 

validação, e a aplicação do sistema na área de estudo revelou seu potencial como ferramenta eficaz para o 

monitoramento contínuo e predição de deslizamentos. 

 

PALAVRAS-CHAVE: Deslizamentos de terra, Redes Neurais Convolucionais, Sensoriamento remoto, 

Monitoramento. 

 

ABSTRACT: This study aimed to develop and apply a system based on convolutional neural networks 

(CNN) for the identification of landslides through satellite image analysis. The proposed methodology was 

applied in the coastal region of Paraná, integrating satellite images from multiple sources with deep learning 

models for monitoring and predictive analysis. Two models were trained: a binary classifier (landslide/non-

landslide) and a segmenter, capable of spatially delimiting affected areas. The database included satellite 

images from multiple sources and georeferenced records of previous events. The system was developed in 

Python, supported by specialized libraries, and integrated with Google Earth Engine for automated image 

acquisition and processing. The models showed satisfactory accuracy in training and validation, and the 

system's application in the study area revealed its potential as an effective tool for continuous landslide 

monitoring and prediction. 
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1 INTRODUÇÃO 

 

 A intensificação dos eventos climáticos extremos, associada às mudanças globais no clima, tem 

contribuído para o aumento da frequência e magnitude de processos geodinâmicos naturais, tais como 

movimentos de massa. Esses fenômenos, ao incidirem sobre áreas ocupadas e resultarem em perdas 

materiais, sociais ou ambientais, são classificados como desastres naturais. No Brasil, os escorregamentos de 

solos e/ou rochas ocorrem, normalmente, associados a eventos pluviométricos intensos e prolongados e 

podem ser intensificados por ações antrópicas. 

 Em paralelo, o avanço do conhecimento no período de Evolução Tecnológica (ou Era Digital) 

impulsionado pelo aparecimento e desenvolvimento das inteligências artificiais (IA) tem permitido o 

desenvolvimento de soluções aplicadas em diversas áreas. As IAs representam ferramentas onde estruturas 

são programadas com o objetivo da realização de tarefas complexas com capacidade cognitiva, em certo 
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nível, similar à humana. Tais ferramentas podem ser ramificadas em diversas categorias, destacando-se a 

Machine Learning (ML), técnica caracterizada pelo aprendizado de máquina que envolve procedimentos de 

avaliação de dados, voltados à automatização de padrões analíticos. Parte-se do princípio de que sistemas 

tecnológicos têm a capacidade de aprender com o uso de dados a partir de padrões e são capazes de tomar 

decisões, aperfeiçoando-se sem interferência humana no processo, conforme descrito por Morais & Branco 

(2023). 

 Para o presente trabalho, buscou-se fundamentar o desenvolvimento e a aplicação de um sistema – 

mais especificamente aqueles do tipo Machine Learning (ML) e suas subdivisões, com destaque para o 

aprendizado profundo (Deep Learning – DL) – para a identificação automática das ocorrências de 

deslizamentos dentro da área de estudo. Por fim, os resultados foram organizados em representações 

georreferenciadas que possibilitam a visualização dos pontos deslizados, oferecendo uma ferramenta de 

apoio à análise técnica e à tomada de decisão — dando agilidade às ações necessárias para que um fenômeno 

natural não se torne um desastre, reduzindo assim eventuais consequências e danos à sociedade.  

2 REVISÃO BIBLIOGRÁFICA 

 

 A compreensão e análise dos eventos requer uma abordagem multidisciplinar que integre aspectos 

geológicos, hidrológicos e técnicas contemporâneas de análise de dados. Porém, o foco deste artigo é na 

utilização das técnologias dispoveis atualmente, uma vez que as tecnologias de aprendizagem de máquina e 

inteligência artificial (IA) avançaram significativamente, tornando-se ferramentas essenciais na análise de 

dados, conforme abordado por Forsyth & Ponce (2011). 

 Os termos IA, aprendizado de máquina (Machine Learnig - ML) e aprendizado profundo (Deep 

Learnig - DL) são frequentemente confundidos, apesar de suas interconexões. A IA refere-se a sistemas que 

simulam ações humanas e é o nível macro, enquanto o ML é um subcampo da IA que se concentra em 

aprender a partir de dados. O crescimento do ML, especialmente em visão computacional, foi impulsionado 

pela disponibilidade de bases de dados rotuladas, que permitiu o surgimento dos DLs, o qual utiliza múltiplas 

camadas para processar informações, permitindo a resolução de problemas complexos a partir de conjuntos 

de menores dados, segundo Goodfellow, Bengio, & Courville (2016) com essas divisões é possível resolver 

problemas complexos a partir de pequenos conjuntos com várias informações. 

2.1 Redes Neurais Convolucionais (CNN) 

 

 A motivação para concepção de redes neurais artificiais surgiu com o reconhecimento da capacidade 

do cérebro humano em resolver problemas altamente complexos, não-lineares e de rápido processamento, 

segundo Haykin (2004). As redes neurais podem ser definidas como um processador maciçamente paralelo e 

distribuído, composto por unidades de processamento simples, que tem a propensão natural para armazenar 

conhecimento experimental e torná-lo disponível para uso. 

 Segundo Karpathy (2016), as redes neurais convolucionais (CNN) são semelhantes às regulares, sendo 

formadas por blocos de neurônios os quais recebem uma informação de entrada, aplica-se um produto 

escalar entre os pesos do neurônio e os valores de entrada e, posteriormente uma função de ativação no 

resultado do produto. O diferencial está na suposição inicial onde, para esse tipo de arquitetura, todas as 

entradas são imagens. Por isso, a CNN trabalha com neurônios dispostos em 3 dimensões: largura, altura, 

profundidade, onde profundidade está referida a uma terceira dimensão de um volume de ativação. Um 

exemplo desse modelo pode ser visto na Figura 1. 

 

 
Figura 1. Tratamento de imagens com CNN (Karpathy, 2016). 

 



 

 
  

 

 

 

 

2.1.1 Definição e Estrutura de CNN 

 

 Uma CNN é um tipo de arquitetura de DL caracterizado por possuir camadas. Sendo assim, uma CNN 

pode também ser definida pelo empilhamento de três tipos principais de camadas: Camada de Convolução, 

Camada de Pooling e Camada Totalmente Conectada. 

 Na camada de convolução é aplicado um filtros ou kernels nas imagens de entrada, de forma a extrair 

determinadas características delas, para que seja encontrado um padrão e posteriormente auxilie na 

identificação de novas imagens. O kernel funciona como uma janela deslizante que irá percorrer a imagem 

de entrada da esquerda para a direita e de cima para baixo por todo seu volume, realizando a multiplicação 

entre a sua matriz e o contexto atual em que a janela se encontra e, somando os valores da multiplicação 

resultante, conforme mostra a Figura 2. 
 

 
Figura 2. Exemplo de uma operação de convolução com kernel 3x3 (Gilleman, D., 2020) 

 

 Entre duas camadas de convolução pode ser inserida uma camada de pooling (tradução livre, 

agrupamento), que serve para simplificar as camadas. É realizado por meio de um stride não unitário, sendo 

2 o tamanho mais comum, de forma que as dimensões espaciais são reduzidas pela metade. Basicamente, 

assim como na convolução, é escolhida uma unidade de área para transitar por toda a saída da camada 

anterior, a qual irá resumir a informação daquela área em um único valor. No modelo apresentado na Figura 

3 é possível verificar o “índice de Max Pooling” que irá definir qual será esse valor reduzido. 

 
Figura 3. Camada de Pooling. (Noh, Hong, & Han, 2015). 

  

 Já a camada totalmente conectada, deve conectar todos os neurônios da camada anterior a cada um dos 

neurônios da camada atual. Quanto mais profunda a rede, mais características específicas podem ser 

mapeadas, devendo-se, contudo, evitar o overfitting, ou seja, um aprendizado tão profundo que a rede não 

consegue generalizar e consegue apenas reconhecer as entradas de treinamento. 

3 METODOLOGIA 

 
 Dada a necessidade de dados de deslizamentos registrados com localização temporal e espacial, foi 

utilizado o banco de dados desenvolvido por Ribeiro (2021) em seu Trabalho de Conclusão de Curso. O 

autor catalogou eventos na região Leste do Paraná, que com o auxílio do software QGIS (ferramenta de 

Geoprocessamento) foi possível georreferenciar cada um dos eventos de deslizamento e visualizá-los de 

forma mais objetiva para a delimitação da área de estudo.  

 A área abordada neste estudo foi delimitada a partir do interesse pela região litorânea do Paraná, 

combinado à maior concentração de eventos de deslizamentos disponibilizados pelo banco de dados, 

totalizando 2.026 ocorrências distribuídas entre 9 anos, estes sendo entre os anos de 1995 e 2018. Porém, 

retirando os deslizamentos ocasionados por chuvas extraordinárias em 2011, o banco de dados ficou com 24 

deslizamentos. Tal região está localizada entre as coordenadas 25,41°S a 25,64°S de latitude Sul e 48,96°W a 

48,56°W de longitude Oeste, e compreende uma área total de 1040 km², abrangendo partes dos municípios 

de Antonina, Guaratuba, Morretes e Paranaguá, em uma região de transição entre o litoral paranaense e o 

primeiro planalto. Essa delimitação pode ser vista na Figura 4. 



 

 
  

 

 

 

 

 

 
Figura 4. Área de estudo 

 

 Para automatizar a identificação dos deslizamentos, foram utilizadas imagens de satélite que 

alimentaram dois modelos de Redes Neurais Convolucionais (CNN): o primeiro para classificação binária 

(deslização/não deslizamento) e o segundo para delimitação espacial das áreas afetadas. Com essas 

informações, foi possível extrair dados como coordenadas dos eventos, índice de confiança da previsão e 

origem satelitial da imagem. 

 A escolha da linguagem de programação Python se deu por sua sintaxe limpa e intuitiva, facilitando a 

interpretação e o desenvolvimento. O ambiente Google Colaboratory (Google Colab) foi selecionado para a 

execução dos códigos, devido à sua integração com recursos em nuvem. 

 No desenvolvimento das CNNs, durante o pré-processamento foram definidos hiperparâmetros 

essenciais que influenciaram o treinamento, como o número de épocas (10) a qual refere-se a uma passagem 

completa pelo conjunto de treinamento, conforme descrito por Goodfellow, Bengio e Courville (2016) e as 

taxas de aprendizagem (0,0001), que controla o tamanho do passo na atualização dos pesos durante a descida 

do gradiente, definido com base em Bishop (2006). Ambos parâmetros foram adotados a fim de evitar 

overfitting. 

 Para a implementação, foram utilizadas bibliotecas especializadas em redes neurais, como TensorFlow 

e Keras. Os modelos foram treinados com dois bancos de imagens públicos do Kaggle, mesclados para 

aumentar a eficiência do treinamento. O primeiro dataset, "bijie-landslide-dataset", contém imagens da 

cidade de Bijie, na China, com e sem deslizamentos, enquanto o segundo, "Landslide Segmentation", possui 

imagens com deslizamentos e máscaras de segmentação. O conjunto de dados final foi dividido em três 

partes: 1.400 imagens para treinamento, 403 para validação e 200 para teste. Essa divisão foi essencial para 

evitar Data leakage, - utilização de informações futuras para realizar a previsão. Exemplo das imagens 

contidas nos conjuntos podem ser vistos abaixo na Figura 5. 

 

 
Figura 5. Exemplos de imagens dos datasets utilizados. (Kaggle, 2024) 

 

 O primeiro modelo desenvolvido baseou-se em uma classificação binária onde 0 = Não deslizamento e 

1 = Deslizamento.  Já o segundo modelo teve como objetivo principal segmentar a área deslizada para que, 

entre dias consecutivos, houvesse um comparativo identificando se o deslizamento ja foi mapeado ou 

representa um novo evento.  

 De forma geral, os modelos seguiram os seguintes passos: (i) Configuração do ambiente e 

hiperparâmetros, (ii) Carregamento e pré-processamento das imagens, (iii) Definição de uma CNN, (iv) 

Treinamento do modelo, (v) Validação do modelo, (vi) Teste do modelo. A etapa de definição do modelo é 



 

 
  

 

 

 

 

onde são definidas as camadas da rede convolucional. A camada construída para ambos modelos segue o 

apresentado na Figura 6. 

 

 
Figura 6. Camada da rede neural desenvolvida. 

 

 Após a definição das camadas de Pooling acrescentou-se uma etapa adicional de Dropout com a 

finalidade de desligar aleatoriamente 25% dos neurônios, a fim de evitar o overfitting em cada época. 

 Os modelos desenvolvidos apresentaram alta acurácia no treinamento e validação, conforme visto na 

Figura 7. Importante ressaltar que pelo fato de ser um Machine Learning, ou seja, aprender por repetições, o 

modelo de segmentação precisou ser retreinado e por isso o gráfico ja inicia com acurácia alta, diferente do 

apresentado pelo modelo de classificação.  

 

 
Figura 7. Acurácia dos modelos desenvolvidos. 

 

 Optou-se por utilizar o Google Earth Engine (GEE), uma plataforma de análise geoespacial baseada 

em nuvem que oferece um timelapse com mais de 40 anos de imagens de satélite. O GEE integra dados de 

diversos satélites, todos acessíveis por meio de uma API (Application Programming Interface) disponível em 

Python, o que facilitou a comunicação com o Google Colab. 

 No que diz respeito aos parâmetros analisados, foram estudadas as órbitas e a resolução espacial dos 

satélites. A resolução temporal também foi avaliada, sendo definida como a frequência com que o sensor 

passa sobre o mesmo local em um determinado intervalo de tempo. A seleção dos satélites foi realizada com 

base nas informações disponíveis no site da National Aeronautics and Space Administration (NASA), 

conforme a Tabela 1. 

 

Tabela 1.  Satélites utilizados 

Satélite Resolução (m) Revisita (dias) Órbita Período ativo 

LandSat 5 30 16 
Polar heliossíncrona 

(Vertical, 0º de 

inclinação) 

1984 – 2013 

LandSat 7 30 16 1999 – 2025 

LandSat 8 30 8 2013 – 2025 

Sentinel-2 10 5 2015 – 2025 



 

 
  

 

 

 

 

 Os satélites selecionados utilizam sensores ópticos, que captam a luz visível e outras partes do 

espectro eletromagnético refletidas pela superfície da Terra, por esse motivo estão sujeitos a interferências 

causadas pelas nuvens. Para mitigar esse problema, foram filtradas somente as imagens que possuíam menos 

de 25% do conteúdo coberto por nuvens, o que impactou diretamente na quantidade de imagens disponíveis. 

 As imagens foram inicialmente extraídas do Google Earth Engine (GEE) com uma resolução de 

1024x1024 pixels, resultando em imagens grandes e distantes. Para aprimorar a análise, essas imagens foram 

divididas em uma malha de tiles, com dimensões de 1 km x 1 km para o satélite Sentinel e 3 km x 3 km para 

os satélites Landsat. Essas dimensões foram testadas durante o mapeamento e mostraram-se adequadas para 

preservação das características importantes das imagens sem distorções. Para cada imagem coletada, foram 

gerados 1.215 tiles para o Sentinel e 135 tiles para o Landsat. 

 Após essas definições, foi desenvolvido um terceiro programa com o objetivo de aplicar os modelos 

na área de interesse. O fluxo de trabalho seguiu a seguinte ordem: (i) preparação do ambiente de execução 

(ii) definição da área de interesse e satélite a ser utilizado, (iii) geração de tiles, (iv) definição do período e 

filtro das nuvens, (v) importação dos modelos treinados, (vi) Loop principal: processamento de cada tiles, 

(vii) construção das informações na tabela resumo. 

 A validação do método automatizado foi realizada comparando os deslizamentos mapeados com os 

registrados no banco de dados de referência. Nesta etapa fez-se uma análise manual devido à interferência de 

nuvens, que gerou falsos positivos. Após uma análise cuidadosa, cada ocorrência recebeu um ID para ser 

plotado no mapa, e cada ponto do banco de dados foi avaliado individualmente para verificar se o modelo foi 

capaz de identificá-lo. 

 Os pontos foram classificados em quatro categorias: (I) Ponto validado, (II) Ponto validado com 

ajuste, (III) Ponto não validado com justificativa e (IV) Ponto não validado. 

4 ANÁLISE DE RESULTADOS 

 

 Os resultados demonstraram que todos os pontos inicialmente não validados foram justificados, 

classificando-se na terceira categoria, conforme apresentado anteriormente. Com isso, conclui-se que, se o 

banco de dados de imagens de satélite fosse de maior qualidade, sem áreas sem informação ou utilizando 

satélites de radar para evitar nuvens, o modelo teria capacidade para mapear todos os pontos de referência.  

 Além dos pontos validados pelo banco de dados, foi possível mapear novos deslizamentos durante os 

9 anos estudados, sendo 41 deslizamentos no total. Para utilizar o satélite Sentinel 2, que possuia melhores 

condições e não havia sido utilizado até o momento por questões de disponibilidade de imagens optou-se por 

aplicar a metodologia para o primeiro mês de 2019, onde foi possível mapear mais 22 deslizamentos. Os 

deslizamentos mapeados estão ilustrados abaixo, na Figura 8. 
 

 
Figura 8. Deslizamentos mapeados. 



 

 
  

 

 

 

 

4.1 Análise dos Satélites 

 

 Os satélites empregados neste estudo apresentam características orbitais semelhantes em termos de 

trajetória e orientação, diferenciando-se principalmente pelos parâmetros operacionais já abordados: 

resolução espacial e periodicidade. Os percentuais de participação de cada satélite no mapeamento podem ser 

vistos na Figura 9. 

 

 
Figura 9. Análise dos satélites. 

 

 Os dados revelam que, embora o Landsat 7 e o Sentinel-2 apresentem percentuais semelhantes na 

quantidade absoluta de deslizamentos, a análise temporal demonstra uma diferença significativa em sua 

eficiência operacional. O Landsat 7 esteve disponível em 99% dos meses analisados, enquanto o Sentinel 2 

em menos de 1% do período total. 

 Esta diferença torna evidente a superioridade do Sentinel-2 para o mapeamento de deslizamentos a 

partir de 2019. No entanto, os resultados também indicam que, na ausência deste sensor, a combinação de 

outros satélites disponíveis apresenta um desempenho satisfatório para o monitoramento contínuo desses 

eventos geológicos.. 

5 CONCLUSÃO  

 

 Este trabalho apresentou a aplicação de modelos de classificação e segmentação baseados em redes 

neurais convolucionais (CNN) para o mapeamento de deslizamentos de terra por meio da análise de imagens 

de satélite, alcançando uma precisão superior a 95% nas fases de treinamento e validação. A confiabilidade 



 

 
  

 

 

 

 

foi maior nos modelos treinados com máscaras de segmentação, destacando a importância dos bancos de 

dados públicos utilizados. 

 A validação dos dados foi feita comparando os resultados de detecção com uma base de dados 

existente, mostrando eficácia do método na identificação tanto de eventos próximos a rodovias como 

também em regiões remotas, que muitas vezes não tem seus deslizamentos registrados pelos métodos 

convencionais. Embora imagens de satélites como Landsat 5 e 7, tenham sido utilizadas para eventos mais 

antigos, os satélites mais recentes apresentaram melhor qualidade de imagem e cobertura temporal, além 

disso, o Sentinel-2 superou a família Landsat em desempenho, devido à sua maior resolução espacial e 

frequência de revisita, permitindo uma análise detalhada com tiles de 1 km². 

 Um pré-processamento rigoroso das imagens de entrada foi identificado como essencial, pois a 

qualidade das imagens impacta diretamente o aprendizado da rede. Dessa forma, a eficácia da metodologia 

proposta depende de dois fatores primordiais: qualidade das imagens e da frequência de aquisição. 

 Apesar dos resultados promissores, o modelo apresenta algumas limitações, como já abordado 

relacionado as imagens de satélite, especialmente em áreas com cobertura frequente de nuvens. Além disso, 

embora a abordagem tenha sido eficaz na região litorânea do Paraná, sua generalização para outras áreas 

geográficas requer ajustes relacionados à topografia, uso e cobertura do solo e tipos de vegetação. Por fim, 

ainda que não tenha sido foco deste trabalho, é possível realizar uma comparação com métodos 

convencionais de mapeamento de deslizamentos, o que contribuiria para evidenciar com mais clareza as 

vantagens operacionais e preditivas da metodologia baseada em redes neurais convolucionais.  

 Em resumo, com o avanço no acesso a imagens de satélites de alta resolução, aliado à melhoria 

contínua das bases de treinamentos, a proposta se torna cada vez mais precisa e eficiente, representando uma 

solução promissora para a prevenção de desastres naturais e gestão de riscos geotécnicos.  
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