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RESUMO: Funções matemáticas generalizadas vêm sendo utilizadas no estudo dos sistemas complexos 

adaptativos, especialmente as funções q-deformadas, funções parametrizadas por um parâmetro q≠1, que 

possibilitam lidar com correlações de longo alcance espacial e/ou temporal, já que se comportam 

assintoticamente como leis de potência. Quando o parâmetro deformacional q→1, as funções generalizadas 

restituem as funções matemáticas habituais. Em um talude de material elasto-plástico muito próximo da 

ruptura, que obedece ao critério de plastificação de Mohr-Coulomb, os deslocamentos horizontais de dois pares 

de pontos foram obtidos por simulações numéricas com o software PLAXIS e analisados quanto às suas 

correlações espaço-temporais. O primeiro par foi localizado na região instável (ambos na face do talude), e o 

segundo, com pontos na face e no interior da massa de solo, em uma zona estável, distante da região de 

instabilização. Os resultados indicam a presença de correlações de longo alcance temporais para os dois pares 

de pontos, descritas por funções q-exponenciais estendidas, com q≠1. Na engenharia, esse tipo de modelagem 

pode auxiliar na previsão de comportamentos críticos em taludes e encostas, apoiando sistemas de 

monitoramento e estratégias de mitigação de riscos. Assim, taludes próximos à ruptura podem apresentar fortes 

correlações espaço-temporais entre os pontos, tornando-os frágeis e susceptíveis a pequenas perturbações 

internas ou externas. 

 

PALAVRAS-CHAVE: Estabilidade de Taludes, Sistemas Complexos Adaptativos, Funções Generalizadas q-

Deformadas, Correlações de Longo Alcance. 

 

ABSTRACT: Generalised mathematical functions have been employed in the study of complex adaptive 

systems, particularly q-deformed functions, which are parameterised by q≠1 and allow for the treatment of 

long-range spatial and/or temporal correlations, as they behave asymptotically like power laws. When the 

deformation parameter tends to unity q→1, these functions reduce to conventional mathematical functions. 

In a slope composed of an elasto-plastic material and approaching failure, governed by the Mohr–Coulomb 

yield criterion, the horizontal displacements of two pairs of points were obtained through numerical 

simulations using the PLAXIS software and analysed with respect to their spatial-temporal correlations. The 

first pair was located within the unstable region (both on the slope face), and the second consisted of one point 

on the slope face and another within the soil mass, in a stable zone away from the destabilised area. 

The results indicate the presence of long-range temporal correlations for both point pairs, described by 

extended q-exponential functions with q≠1. In geotechnical engineering, this type of modelling can assist in 

predicting critical behaviours in slopes and embankments, supporting monitoring systems and risk mitigation 

strategies. Thus, slopes approaching failure may exhibit strong spatial-temporal correlations between points, 

rendering them fragile and highly susceptible to minor internal or external disturbances. 

 

KEYWORDS: Slope Stability, Complex Adaptive Systems, q-Deformed Generalised Functions, Long-Range 

Correlations. 



 

1 INTRODUÇÃO 

Fenômenos de movimentação de massa em encostas naturais são ocorrências geológico-geotécnicas de 

grande importância, em função das consequências catastróficas que ocasionam e a perdas de vidas humanas. 

Este artigo analisa a instabilidade de encostas sob a ótica da teoria dos sistemas complexos adaptativos, 

que se caracterizam pela presença de interações de longo alcance entre seus elementos. O estudo considera um 

talude homogêneo e isotrópico, com comportamento elasto-plástico e critério de resistência de Mohr-Coulomb, 

em condições drenadas e próximo da ruptura. Foram avaliados os deslocamentos horizontais de dois pares de 

pontos: um localizado na região instável do talude e outro em uma área mais estável, visando a identificação 

de interações temporais de longo alcance. 

Assim, a evolução destas correlações foi investigada por meio de gráficos de correlação temporal 

(correlogramas), ajustados com funções matemáticas q-deformadas, em especial as funções q-exponenciais 

estendidas. 

2 SISTEMAS COMPLEXOS E FUNÇÕES q-DEFORMADAS 

2.1 Sistemas Complexos 

Os sistemas complexos adaptativos são sistemas dinâmicos que apresentam as seguintes características 

(Tsallis, 2023): 

• Correlações espaço-temporais de longo alcance; 

• Expoente de Lyapunov (λ) máximo positivo tendendo a zero, caracterizando divergência em lei de 

potência (muito lenta) entre duas trajetórias inicialmente muito próximas; 

• Sistemas fracamente caóticos; 

• Regidos por Estatísticas q-Gaussianas (não-Gaussianas, em Lei de Potência); 

• Leis evolutivas em Lei de Potência. 

Leis evolutivas em lei de potência são características destes sistemas, posto que expressam 

matematicamente uma invariância de escala temporal (Nussenzveig, 1999). Assim, a expressão (1) abaixo tem 

sido utilizada em sistemas que apresentam dinâmica de limiar (Sornette, 1998, 2003), e, no caso de taludes, na 

evolução de seus deslocamentos horizontais (Fukuzono, 1985; Silva, 2023), ou seja: 

𝑦 = 𝐴 + 𝐵 ∙ (𝑡𝑐 − 𝑡)𝛼   (1) 

onde, 

𝑦 – deslocamento horizontal de um dado ponto de interesse  

𝑡𝑐 – tempo de ruptura do talude (parâmetro de ajuste)  

𝑡 – tempo corrente 

𝐴, 𝐵 e 𝛼 – parâmetros de ajuste  

2.2 Funções Matemáticas q-deformadas 

As funções generalizadas q-deformadas surgem no âmbito das formas entrópicas generalizadas, a de 

Tsallis sendo a mais conhecida (Tsallis, 1988, 2023). 

A função que otimiza a entropia de Tsallis é a função q-exponencial generalizada, mostrada abaixo 

(Tsallis, 2023): 

 

𝑒𝑥𝑝𝑞(𝑥) = [1 + (1 − 𝑞)𝑥]
1

1−𝑞  (2) 

 

que restitui a função exponencial clássica quando 𝑞→1. A expressão (2) é, na verdade, uma função em lei de 

potência assintótica, i.é, 𝑒𝑥𝑝𝑞(𝑥) →  𝑥
1

1−𝑞  para valores muito grandes do argumento 𝑥 (Menezes Filho, 2003). 

A função q-exponencial acima pode ser escrita mais generalizadamente como 



 

𝑦 = 𝑎[𝑒𝑥𝑝𝑞 (−
𝑥

𝑏
)

𝛽

= 𝑎[1 − (1 − 𝑞) (
𝑥

𝑏
)

𝛽

]
1

1−𝑞  (3) 

denominada função q-exponencial estendida e utilizada neste trabalho (para 𝛽=2, a função (3) chama-se q-

gaussiana). Mais particularmente, os correlogramas seriais amostrais dos deslocamentos horizontais dos 

pontos selecionados do talude foram ajustados pela expressão (3), como se verá adiante.    

3 METODOLOGIA ADOTADA 

Os deslocamentos horizontais dos pontos escolhidos foram gerados pelo programa PLAXIS 2D 

(Brinkgreve, 2002), em análises utilizando o critério de plastificação de Mohr-Coulomb, em um modelo elasto-

plástico perfeito. 

Os parâmetros utilizados nas simulações estão apresentados na Tabela 1. 

Tabela 1 – Parâmetros do material e demais variáveis de entrada do modelo 

Parâmetro Adotado no modelo 

Angulação do talude (𝜃) 40о 

Tipo de análise Drenada 

Peso específico (𝛾𝑠𝑎𝑡 = 𝛾𝑢𝑛𝑠𝑎𝑡) 19,0 kN/m³ 

Módulo de Young (Eref) 30 MPa 

Coeficiente de Poisson (𝜐) 0,3 

Coesão (c) 8,0 kPa 

Ângulo de atrito (𝜙) 30о 

Sobrecarga (q) 10 kPa 

A Figura 1 mostra o domínio de estudo das análises numéricas, em que um talude hipotético seco é 

sujeito a uma carga uniformemente distribuída, localizada na superfície superior horizontal do talude de modo 

a colocá-lo muito próximo da ruptura. 

 
Figura 1 – Perfil do modelo adotado para as análises (medidas em metros) e a localização dos 3 pontos 

selecionados A, B e 1 (Ramos, 2025). 



 

Os pontos destacados foram originalmente utilizados por Ramos (2025). Neste estudo, apenas as 

correlações temporais entre os pontos A e B, e A e 1 foram analisadas. A Tabela 2 apresenta as coordenadas 

destes três pontos no sistema de eixos XY, localizado no canto inferior esquerdo da Figura 1. 

Tabela 2 – Coordenadas dos três pontos selecionados (adaptado de Ramos, 2025). 

Ponto Coord. X Coord. Y 

A 60,00 80,00 

B 71,92 70,00 

1 21,47 32,22 

As Figuras 2 mostram a evolução dos deslocamentos horizontais dos pontos A, B e 1 (Ramos, 2025). 

 

Figura 2 – Séries temporais dos deslocamentos horizontais dos pontos A, B e 1 (Ramos, 2025) 

O trecho em vermelho refere-se ao produzido originalmente pelo programa (simulações efetuadas até 

100 dias), ao passo que o trecho preto, extrapolado do original até a ruptura, foi construído utilizando-se a 

expressão em lei de potência 1 (ver inserção nas Figuras). A Tabela 3 mostra o resultado dos ajustes em lei de 



 

potência (expressão 1) para a evolução temporal dos deslocamentos dos pontos A, B e 1 ilustrados na Figura 

2 (Silva,2023).  

Tabela 3 – Parâmetros dos ajustes pela expressão (1) às séries temporais dos pontos A, B e 1 (Silva, 2023). 

Ponto A B 𝜶 tc 𝑹𝟐 

A 1,5260 -1,0376 0,0791 130,8753 0,999867 

B 4,2592 -3,5981 0,0350 123,5225 0,999495 

1 1,0454 -0,4669 0,1360 374,7986 0,999965 

A extrapolação dos dados efetuados com a expressão (1) possibilitou alcançar a ruptura dos pontos 

analisados, indo até onde o programa não conseguiu atingir. Para isso, foi realizada uma análise de segurança 

– uma função opcional do programa – em que os parâmetros de resistência foram reduzidos até atingir um 

fator de segurança de 1,014. Portanto, a julgar pelos resultados apresentados anteriormente, o modelo numérico 

não chegou a atingir efetivamente a ruptura global do talude. 

As correlações entre as séries temporais dos deslocamentos horizontais dos 3 pontos escolhidos foram 

determinadas por meio de correlogramas seriais amostrais. Mais especificamente, considerando uma série 

temporal dos deslocamentos horizontais de um par de pontos (U e V), separados por um intervalo de tempo 

k, pode-se estimar a correlação serial amostral de lag k (Rk) pela seguinte expressão (Moretin e Toloi, 2018):  

𝑅𝑘 =  
∑ (𝑈𝑡 −  𝑈̅)(𝑉𝑡+𝑘 −  𝑉̅)𝑁−𝑘

𝑡=1

√∑ (𝑈𝑡 −  𝑈̅)𝑁
𝑡=1

2
∑ (𝑉𝑡 −  𝑉̅)𝑁

𝑡=1
2

  

(4) 

 

com k = 0, 1, 2, ..., N-1, e  𝑈̅ e  𝑉̅ são as médias temporais. 

O gráfico de Rk em função de k é chamado Correlograma Serial Amostral, bastando representar Rk para 

k ≥ 0. 

4 ANÁLISE E INTERPRETAÇÃO DOS RESULTADOS 

4.1 Pontos Selecionados e Respectivos Tempos de Análise 

Esta sessão apresenta as correlações temporais dos pontos A, B e 1, tomados da seguinte forma e para 

os seguintes tempos de análise: 

• Pontos A e B: 100 dias, 120 dias e 123,52 dias (este último é o tempo de ruptura do ponto B); 

• Pontos A e 1: 100 dias, 120 dias, 123,52 dias, 125 dias e 130,87 dias (este último é o tempo de ruptura 

do ponto A). 

Os tempos acima referidos serão doravante representados nos gráficos subsequentes de acordo com a 

seguinte simbologia: 

✓ Tempo de 100 dias: ● 

✓ Tempo de 120 dias: ◼ 

✓ Tempo de 123,52 dias: ▲ 

✓ Tempo de 125 dias: ♦ 

✓ Tempo de 130,87 dias: ★ 

4.2 Correlações Temporais de Longo Alcance 

As Figuras 4a e 4b apresentam os correlogramas seriais amostrais (K vs RK) do ponto A com os pontos 

B e 1, respectivamente, para os tempos de análise mencionados anteriormente (Ramos, 2025). 

 



 

   

Figura 4 – (a) Correlogramas seriais amostrais envolvendo os pontos A e B (tempos analisados: 100 dias, 

120 dias e 123,52 dias); (b) Correlogramas seriais amostrais envolvendo os pontos A e 1 (tempos analisados: 

100 dias, 120 dias, 123,52 dias, 125 dias e 130,87 dias) (Ramos, 2025). 

Pode-se observar que à medida que os tempos se aproximam do tempo de ruptura do ponto B (Figura 

4a) e do ponto A (Figura 4b), os lags temporais aumentam de forma drástica, sinalizando um aumento da 

correlação entre os dados das séries temporais dos deslocamentos horizontais dos dois pares de pontos 

analisados. Ressalte-se que Ramos (2025), em seu trabalho de pesquisa, encontrou este mesmo comportamento 

para vários outros pontos analisados. 

Segundo Bak (1996), Tsallis (2023) e Sornette (1998, 2003), correlações espaciais e temporais operam 

conjuntamente em sistemas complexos adaptativos, sugerindo que correlações espaciais de longo alcance 

também se fizeram presentes no sistema, embora não tenham sido, neste trabalho, determinadas. 

Note-se também que a presença de correlações espaço-temporais de longo alcance torna o sistema 

extremamente frágil a qualquer perturbação interna ou externa que possa vir a ocorrer (Bak, 1996; 

Nussenzveig, 1999; Menezes Filho, 2003). Assim, um talude próximo da ruptura pode ser comparado a uma 

grande caixa de ressonância, que reverbera quaisquer perturbações atuantes no sistema, por menores e mais 

ínfimas que sejam, independentemente de serem previsíveis ou não. 

4.3 Correlogramas Seriais Amostrais Descritos por Funções Matemáticas Generalizadas q-deformadas 

Este item trata da aplicação da função q-exponencial estendida (3) aos correlogramas amostrais das 

Figuras 4a e 4b, envolvendo os pontos A e B, e A e 1, em função do seus respectivos lags normalizados pela 

variável b respectiva (resultado da aplicação da expressão (3) aos dados das Figuras 4a e 4b). 

A Figura 5a apresenta os correlogramas seriais normalizados para os dados da Figura 4a, envolvendo os 

pontos A e B. Nela se pode observar o colapso dos dados de correlação e seu excelente ajuste pela expressão 

q-exponencial estendida (3) (R2 = 0,999055). Note-se o valor de q = 0,2485 diferente de 1,0 e o expoente 𝛽 = 

1,8949 bastante próximo de 2,00, configurando um decaimento lento das correlações, assintoticamente em lei 

de potência, próxima de uma função q-gaussiana (Ramos, 2025). 

 

(b) (a) 



 

    
 

 

 

 

 

 

 

Figura 5 – (a) Correlograma serial amostral normalizado envolvendo os pontos A e B; (b) Correlograma 

serial amostral normalizado envolvendo os pontos A e 1. Em ambos os casos, a curva vermelha é o ajuste 

dos dados experimentais à expressão q-exponencial estendida (3) (Ramos, 2025). 

 

De forma semelhante, a Figura 5b mostra o ajuste da expressão (3) aos dados de correlação normalizados 

da Figura 4b, envolvendo os pontos A e 1. Pode-se notar o excelente ajuste pela função q-exponencial estendida 

(3) (R2 = 0,998919), traduzindo um decaimento lento (em lei de potência), além do colapso dos dados bastante 

significativo (Ramos, 2025). 

Novamente, o valor de q = 0,2856 difere de 1,0, ao passo que o expoente 𝛽 = 2,1223 situa-se muito 

próximo de 2,00, sinalizando novamente uma função q-gaussiana. 

5 CONCLUSÕES 

Os resultados experimentais sugerem fortemente a existência de correlações temporais de longo alcance 

entre os pontos A, B e 1, em razão do aumento significativo dos lags temporais dos correlogramas à medida 

que a evolução de seus deslocamentos horizontais se aproxima dos tempos de ruptura dos pontos A e B. 

Uma vez que correlações espaciais e temporais operam conjuntamente, sugere-se que correlações 

espaciais de longo alcance também estejam acontecendo no sistema pesquisado, embora não tenham sido 

avaliadas neste trabalho. A função q-exponencial estendida descreveu, de forma excelente, a evolução dos 

correlogramas seriais em função dos lags temporais normalizados, dos pontos próximos e distantes da região 

instável do talude, sempre com q ≠1 e expoente 𝛽 muito próximo de 2,00, configurando funções q-gaussianas.  

Do ponto de vista prático, os resultados indicam que análises numéricas podem antecipar 

comportamentos de instabilidade em taludes, fornecendo subsídios para sistemas de monitoramento e alerta 

precoce. Em aplicações de engenharia, isto significa que deslocamentos observados em pontos específicos 

podem servir como indicadores de risco para regiões mais amplas, favorecendo o planejamento de contenções, 

obras de infraestrutura e estratégias de mitigação em áreas urbanas e rodoviárias sujeitas a escorregamentos. 

Desta forma, o uso de funções q-deformadas pode ser incorporado como ferramenta complementar na previsão 

de ruptura e no aumento da segurança de projetos geotécnicos. 
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